728x90
문제
다음 글을 근거로 판단할 때, <보기>에서 옳은 것만을 모두 고르면?
○ 甲과 乙은 총 10장의 카드를 5장씩 나누어 가진 후에 심판의 지시에 따라 게임을 한다. ○ 카드는 1부터 9까지의 서로 다른 숫자가 하나씩 적힌 9장의 숫자카드와 1장의 만능카드로 이루어진다. ○ 이 중 6 또는 9가 적힌 숫자카드는 9와 6 중에서 원하는 숫자카드 하나로 활용할 수 있다. ○ 만능카드는 1부터 9까지의 숫자 중 원하는 숫자가 적힌 카드 하나로 활용할 수 있다. |
<보 기>
ㄱ. 심판이 가장 큰 다섯 자리의 수를 만들라고 했을 때, 가능한 가장 큰 수는 홀수이다. ㄴ. 상대방보다 작은 두 자리의 수를 만들면 승리한다고 했을 때, 乙이 ‘12’를 만들었다면 승리한다. ㄷ. 상대방보다 큰 두 자리의 수를 만들면 승리한다고 했을 때, 甲이 ‘98’을 만들었다면 승리한다. ㄹ. 심판이 10보다 작은 3의 배수를 상대방보다 많이 만들라고 했을 때, 乙이 3개를 만들었다면 승리한다. |
① ㄱ, ㄴ
② ㄱ, ㄷ
③ ㄷ, ㄹ
④ ㄱ, ㄴ, ㄹ
⑤ ㄴ, ㄷ, ㄹ
해설
▷ 정답 ④
ㄱ. (O)
6 카드와 만능카드를 모두 9 카드로 사용하고, 큰 숫자 카드부터 나열하여 가장 큰 수를 만들면 99987이다.
ㄴ. (O)
乙이 가장 작은 두 자리 수로 12를 만드는 경우는 만능카드와 2 카드 또는 1 카드와 2 카드를 뽑았을 경우이다. 각각의 경우에 남은 카드로 甲이 만들 수 있는 가장 작은 두 자리 수는 13이므로 乙이 반드시 승리한다.
ㄷ. (X)
9를 만들 수 있는 카드는 6 카드와 9 카드, 그리고 만능카드이다. 따라서 甲이 98을 만들었을 때 여전히 9를 만들 수 있는 카드가 2장 남으므로, 乙이 99를 만들어 이길 수 있다.
ㄹ. (O)
10보다 작은 3의 배수를 만들 수 있는 카드는 3, 6, 9, 만능카드로 총 4장이다. 이 중 3장을 선점한다면 상대방은 최대 1장만 가질 수 있다. 따라서 3개를 만든 乙은 항상 승리한다.
반응형
'5급 공채 (행정고시) > 2020년 나책형' 카테고리의 다른 글
[20행(나)-13해] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 13번 해설 (0) | 2021.10.13 |
---|---|
[20행(나)-13] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 13번 (0) | 2021.10.13 |
[20행(나)-12해] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 12번 해설 (2) | 2021.10.13 |
[20행(나)-12] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 12번 (0) | 2021.10.13 |
[20행(나)-11] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 11번 (0) | 2021.10.13 |
[20행(나)-10해] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 10번 해설 (0) | 2021.10.13 |
[20행(나)-10] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 10번 (0) | 2021.10.13 |
[20행(나)-9해] 2020년 5급 공채 (행정고시) PSAT 상황판단 나책형 9번 해설 (0) | 2021.10.13 |
댓글